Module: main.py
Example of an NLP Pipeline
This script demonstrates the complete modeling pipeline for NLP, from data loading and preparation to model training and evaluation.
Functions
from config import MODEL_TYPE, EPOCHS, BATCH_SIZE
from data_preparation import load_and_prepare_data
from model_factory import get_nlp_model
from train_and_evaluate import train_and_evaluate_keras_model, train_and_evaluate_huggingface_model
def main():
"""
Main function to run the NLP pipeline.
"""
# Load data
(X_train, X_test, y_train, y_test), tokenizer = load_and_prepare_data()
# Get the model
model, huggingface_tokenizer = get_nlp_model(MODEL_TYPE, num_classes=y_train.shape[1])
if MODEL_TYPE == "HuggingFace":
train_and_evaluate_huggingface_model(model, huggingface_tokenizer, X_train, y_train, EPOCHS, BATCH_SIZE)
else:
train_and_evaluate_keras_model(model, X_train, X_test, y_train, y_test, EPOCHS, BATCH_SIZE)
print("Training and evaluation complete.")
if __name__ == "__main__":
main()