Documentation
Deployment
Model Managment
Dvc Setup

DVC Setup and Usage Guide

This guide will help you set up and use Data Version Control (DVC) effectively.

Introduction to DVC

DVC is a data version control tool that enables machine learning teams to manage datasets, models, and pipelines in a Git-like manner.

Prerequisites

Before using DVC, ensure that you have the following tools installed:

  • Python 3.x
  • Git

Installation

To install DVC, run:

pip install dvc
 
cd /path/to/your/project
 
git init
 
dvc init
 
git add .dvc
 
git commit -m "Initialize DVC"
 
dvc add data/my_dataset.csv
 
git add data/my_dataset.csv.dvc
git commit -m "Add dataset to DVC"
 
dvc remote add -d myremote s3://mybucket/dvcstore
 
dvc push
 
dvc pull
 
dvc add models/my_model.pkl
 
git add models/my_model.pkl.dvc
git commit -m "Add trained model to DVC"
 
dvc run -n train_model \
  -d data/my_dataset.csv \
  -o models/my_model.pkl \
  python train.py
 
dvc repro