Module: config.py
Configuration Settings
The config.py
module contains configuration settings for the clustering process. These settings include model type, number of clusters, random state, and feature columns.
Configuration Variables
-
MODEL_TYPE
: Specifies the type of clustering model to be used. Options could include "KMeans", "DBSCAN", "AgglomerativeClustering", etc.- Example:
"KMeans"
- Example:
-
N_CLUSTERS
: The default number of clusters to be formed.- Example:
3
- Example:
-
RANDOM_STATE
: Controls the randomness of the clustering process for reproducibility.- Example:
42
- Example:
-
FEATURE_COLUMNS
: A list of column names to be used as features in the model. These columns are used for clustering.- Example:
[ "sepal_length", "sepal_width", "petal_length", "petal_width" ]
- Example:
Example Configuration for Iris Dataset
The provided configuration is set up for clustering the Iris dataset:
MODEL_TYPE
:"KMeans"
N_CLUSTERS
:3
RANDOM_STATE
:42
FEATURE_COLUMNS
: List of feature columns relevant to the Iris dataset:[ "sepal_length", "sepal_width", "petal_length", "petal_width" ]